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KINETIC THEORY OF DIFFUSION IN LIQUID AND GAS MIXTURES 

�9 A. Sh. Bikbulatov UDC 532.72:533.15:518.5 

Expressions for evaluating diffusion coefficients in real multicomponent solutions 
are obtained on the basis of the kinetic theory of dense gases and liquids. 

For multicomponent mixtures, molecular mass transport is determined from [I] j=--D-grad 
y, where D is the diffusion coefficient matrix of multicomponent systems. 

Since most mass-exchange processes of separation, mixing, and chemical transformation 
occur, as a rule, in multicomponent systems, to calculate these processes information is 
needed on the diffusion coefficient matrix, providing the total pattern of mass transport. 
There are quantitative and qualitative distinctions between multicomponent and binary diffu- 
sion [2, 3]. However, due to the absence of information on D the available methods of eval- 
uating processes in multicomponent systems operate only with a single coefficient of binary 
diffusion. This situation restricts the development of mass transfer theory in multicompo- 
nent systems and the creation of justified methods of a computational structure. 

It must also be noted that experimental data on diffusion coefficients in a wide inter- 
val of concentrations and temperatures, necessary for the calculations, are absent even for 
binary mixtures. Theoretical methods of calculating transport coefficients in liquid mix- 
tures are far from complete. Thus, the more recently developed kinetic theory of multicom- 
ponent dense gases and liquids for rigid sphere models [4] with the use of a radial distribu- 
tion function [3] generally renders the basic transport characteristics in ideal mixtures. 
For this reason, this theory does not fully include the complexity of molecular interactions, 
and the agreement between calculated and experimental values of diffusion coefficients in 
nonidea! systems is very poor. Therefore, further development of the kinetic theory must 
occur in the direction of a refined intermolecular interaction in real solutions. 

One of the methods of taking into account the real molecular interaction in liquid mix- 
tures, more precisely the presence of many-particle interactions and real shapes of inter- 
molecular forces, as well as capabilities of formation of associated complexes, is their ac- 
count in describing collision terms of the kinetic equations, which is still an unresolved 
problem. Another method, recently developed, consists of using in the solution of the kinetic 
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equations reliable information on equilibrium properties of solutions, which automatically 
include all characteristic features of liquid mixtures. 

In the present study the nonideal behavior of the system is accounted for by using in 
the transformed kinetic equations equations of state of real mixtures, in which appear acti- 
vation coefficients, being a quantitative measure of the deviation of properties of real 
solutions from ideal ones [5]. 

Unlike thermal conductivity and viscosity, diffusion is observed in systems which can 
exchange a number of particles in an arbitrary fashion. The properties of these systems 
are described by using independent variables: the volume V, the temperature T, and the chem- 
ical potential ~i" And then, establishing a connection between statistical mechanics and 
thermodynamics, we obtain an equation of state of equilibrium systems of the form [6] 

Vdp--SdT--~Nid~i = 0 (I) 
i 

or  

Vdp - -  SdT - - ~ ,  kT (x~ d In x~ + xid In y,) = O. (2) 
i 

In expression (2) the first three terms determine the connection between thermodynamic quanti- 
ties in ideal media, and the latter provides the energy increment due to nonideality. It 
must be noted that if in (2) one takes Ti ffi I, then an expression is obtained similar to 
that used in the transformed kinetic equations [4, 7]. 

To describe transport effects in multicomponent systems we use the modified Enskog 
equation [4] 

+ v ,  + x ,  - -  __ + (r+auk)-- 
8vi 

- -  g U  (r - -  1/2 ao k, ~o) f~ (3/j(r--Guk)]a~ (w j,. k) d k d ~  i, ] = 1, 2 . . . . .  v. (3)  

The solution of Eq. (3) is carried out in the same manner as in [4, 7]. 

The time derivatives are eliminated as usual [4, 7], while for fixed gradients and es- 
tablished relations between them we use, unlike the available solutions, the equation of state (2), 

which prior to that is regrouped with separation of the terms | @hi and lax--jr [5]. Keeping 
n~ Or ~ Or 

in mind that since the transformed kineticequations lead to using the equation of state of 
a real mixture, in the collision parts of these equations we neglect all terms besides the 
first, since they provide corrections to the equation of state of an ideal gas, and take 
into account momentum and energy transport during molecular collisions [7]. Solving (3), 
then, we obtain kinetic equations for the case of mass transport, which for dp=0, dT=0, Xl =0 
have the following form: 

where 

n d , . C , =  ~ S S  fo fo ((D; q- ~i--(D,-- (Dj)G~igt]((hj)(wjvk)dkdvj; 
ni i 

(4) 

�9 Tl 8x~ Or (5)  

S i m i l a r  e x p r e s s i o n s  f o r  d i a r e  o b t a i n e d  in  t h e r m o d y n a m i c s  o f  i r r e v e r s i b l e  p r o c e s s e s  [1 ,  7 ] .  

We s e e k  a s o l u t i o n  o f  Eq. (4) i n  t h e  fo rm 

~)i = n ~ C ~ . d  h, 
h 

with the calculation being performed as in [7]. As a result we obtain expressions for the 
determination of the expansion coefficients of the function C~: 
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Fig. I. Diffusion coefficients ~,~.10' ~2/sec) 
of t~ acetone-water ~stem as a funct~n of the 
acetone concentration in t~ m~ture xl (molecu- 
lar wei~t) at T = 298~ a) calculated, b) ex- 
perimental values [Ii]. 

Fig. 2. Diffusion coeff~nts ~12.10s (m2/sec) 
of the benzene-met~nol ~stem as a function of 
the benzene concentration in the m~ture xl 
(molecular wei~t) at T = 298~ a) calculated; 
b) experimental values [I0]. 

Fig. 3. Diffus~n coeffic~nts ~12-10 ~ ~2/sec) 
of t~ acetone-~hlorofo~ ~stem as a function 
of t~ acetone concentration in t~ m~ture x l 
(molecular wei~t) at T = 298~ a) calculated; 
b) e~erimental values [II]. 

.~F,j,,,t_.y_ ) "  :,,,jkT,~,:,(~o - -  C / 5 )  = 8 , , , - - ~ , , ,  i ,  t , =  l .  2 ,  . .  . ,  , , ,  (6) 

where 
n~ n~ gu 8u -~ /2 ni gu n~ n{gu 

Fu 
nnq ~ 

--(mq m,) - ' ' 2  [( m------!--I ) ',2 
L\ mq / 

(61q- ttlq)] , 
( 7 )  

kT ~0" 3 m~ -v- mt 
i l  ~ - - -  ,-,(I, I) " (8) 16 m~ m z n',~u 

The diffusion rate is determined as usual [4, 7]. Eliminating the gradient dependence, and 
using an expansion of the function C~ in Sonin--Laguerre polynomials [4, 7], we obtain 

J 

t 2mj  ) ~ ( ~ o  - -  C,.o) n . 

U s i n g  (5)  a n d  Eq,  (2)  f o r  t h e  e l i m i n a t i o n  o f  t h e  g r a d i e n t  d e p e n d e n c e ,  we h a v e  
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~(6uq- x~ flT~ .(1--6.))  

�9 ?t Oxm 

Ox,n Or (9) 

Comparing (9) with 

j j  = mj nj-C~ = -- ~ D~ mt an, 
t ~m Or 

we obtain expressions for  the multicomponent diffusion coefficients 

DOt_,( mjnjl / kT  \I/2,~ _~ xh O?h (1-- 64,)) 
74 Oxl 

~16,t4 x, ~, 0--6,,)) 
_ 7~ ~ (6hm+ xh or4 (l---6h,,,))]. 

In  (10) (~'~0 --  C~) a r e  determined from F.q. (6) .  

In writing down Eqs. (6), (7), and (I0) the choice of m and q is arbitrary: 
it is convenient to take m ffi q = v, if v = 2, then q = i. 

Multiplying (6) by the expression in the square brackets of (10) 
with account of (10) we have 

(1o) 

if V> 2, 

and s!~ing over h~ k, 

~F'jmzD~ ( 6i~+ x' aTt ) I ~ ~x4 074 ( 1 ]~_q 7t axm (l--6im) 1 --[- ~t'~l~4 aTk - -  6itq- 7iX~ 07iOXl (1--6tt), . (11) 

4 ~  ~ 74 OX,~ 

It follows from (II) that ~F~j ~- 0, and 
i 

Xk 

[( ) c " )I ~. 8i~H xi ay~ (l--Oi=) k~IVh ~X~ '8~,§ X~ aYi (I 6i~) ---o. 
�9 ?~ ax~ 1 -b "~, x4 0y4 y~ axt 

7k axm 
Thus, to calculate the diffusion coefficients it is necessary to be able to calculate 

the radial distribution function gij and the derivatives of the activation coefficients with 
1 07k 

respect to composition 
74 axm 

The calculation of gij was performed by equations available in the literature, and ob- 

tained on the basis of equations of state for the rigid sphere model, which gives most ac- 
curate results for reduced densities ~<0.52 [3], It must be noted here that the radial dis- 
~ribution function is not very sensitive to the choice of the molecular interaction poten- 
tial [8]. 

I ay~ 
The derivatives of the activation coefficients with respect to composition - - -  are u Oxm 

c a l c u l a t e d  by the Wilson equat ion [9] ,  which g ives  a f a i r  approximation to exper imenta l  da ta  
on equ i l ib r ium between the l i q u i d  and the vapor in b ina ry  and even in three-component mix- 
tures. According to this equation we have 

2 

! 
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TABLE i. Diffusion Coefficients in Three-Component Liquid 
Mixtures (Dij.10 9 mZ/sec) at T = 298~ 

0,766 
- 0,15 

0,1 
0,4 
0,35 

0,114 
0,30 
0,80 
0,5 
0,3 

4,6 
3,4 
3,3 
4,3 
3,6 

Acetone (1)" Bermene (2)- Methanol (3) 
4,4 --0,9 0,9 --0,6 
3,0 --0,25 o , 1 5  - i  ,o 
3 , 5  o , 5  1 ,~ - - 1 , 5  
4,4 0,7 118 --1,2 
3,8 --0,3 0,4 --1 ,l 

--0,83 
--0,3 
--1,4 
--0,8 
--0,6 

3,2 2,7 
1,6 2,2 
0,8 I ,1 
2,1 1,7 
1,6 2,1 

0,3 

0,15 

Acetone (1)- Bermen.e (2)- Carbon ' tetrachloride (3) 

0,3511,9 ! 1,9 ]--0,2 [--0,241--0,061--0,04712,112,2 1,88 --0,213 --0,037 2,25 
0,15 1,4 1,6 --0,07 --0,06 --0,06 --0,08 1,5 1,7 

.~ xiAih (Aim - -  Aih) _~_ [(Xk -~- Xm) Amh "-~ Xi Arni] Amk , 

( Z  xjA,Y) 2 (ZX#Ami) 2 
] / 

i=y=k, m; k=/=m; k, m, ] =  1, 2, 3. 

The parameters Akj are given in the literature; besides, they can be calculated easily. 

The diffusion coefficients in liquid mixtures were measured in a mean-bulk reference 
SYstem. Therefore the values of the diffusion coefficients, calculated from Eq. (i0) and 
written in the center of mass system, must be recalculated (in coefficients obtained in the 
mean-bulk reference system) [ i] : 

r 'V--1  o=, ] 
= - -  k i  ( v ~ - - v , )  . 

The diffusion coefficients of a number of ideal and nonideal binary and multicomponent liquid 
mixtures were calculated by the given method. According to (i0) the expression for the dif- 
fusion coefficient in binary liquid and gas mixtures in the center-of-mass system is 

~2 OXl q-n2 1 -~ 71 Ox2 

where ~2 is the diffusion coefficient of a binary mixture, calculated by Eq. (8), and 
~2/g12 corresponds to the diffusion coefficient obtained by Thorne for a binary dense mix- 
ture [4]. 

The diffusion coefficients were calculated for the binary ideal mixture benzene-carbon 
tetrachloride and for the nonideal solutions acetone-water, acetone-methanol, acetone-chloro- 
form, benzene-methanol, acetone-carbon tetrachloride, acetone-benzene, and ethanol-water. 
For all mixtures the integrals ~ were calculated for the rigid sphere model. 

The results of the calculations are shown in Figs. I-3. Also provided are the experi- 
mental values of the diffusion coefficients e ~J2. It is seen from the comparison that the 
calculated values of the diffusion coefficients ~c2 are in fair agreement with the experi- 
mental ones, with the mean deviation not exceeding 35%. The existing disagreement is ex- 
plained by the inaccuracy in calculating the radial distribution function. Thus, most of 
the deviation corresponds to cases in which ~ > 0.52. At the same time, with increasing 
deviation of ~ from the limiting value of 0.52 the error in calculating ~)?2 also increases. 
Some error in the calculation is also due to the calculation of v i, defined as the inverse 
of the density of a pure liquid, which is valid only for ideal solutions. 

Also calculated were the diffusion coefficients Di~ of the three-component systems ace' 

tone--benzene-nnethanol, acetone--benzene-carbon tetrachloride. The results of the calcula- 
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tions are given in Table i. Also given are the experimental values of the diffusion coeffi- 
cients De~. [i0]. As seen from the comparison, here also there is satisfactory agreement be- 

• tween the calculated and experimental values of the diffusion coefficients of all matrix 
elements. In the case of three-component mixtures the errors occurring in calculating the 
diffusion coefficients of binary systems also increase due to the inaccuracy in calculating 

the quantity , to which the nondiagonal matrix elements are largely sensitive, particu- 
?k Ox~ 

l a r l y  due to  t h e i r  s m a l l  v a l u e s  in  c o m p a r i s o n  w i t h  t h e  d i a g o n a l  v a l u e s .  Thus ,  a s m a l l  change  
in  Aij  improves  t he  c o n v e r g e n c e  of  t h e  n o n d i a g o n a l  e l e m e n t s  t o  t h e  e x p e r i m e n t a l  v a l u e s .  I t  
must  be  n o t e d  t h a t  a measu remen t  o f  t h e  n o n d s  m a t r i x  i s  c a r r i e d  o u t  w i t h  a s m a l l  e r r o r ,  
which  a l s o  i n c r e a s e s  in t h e  r e g i o n  of  s m a l l  o f  Di j  v a l u e s ,  and can  r e a c h  100% and more .  

By t h i s  method were  a l s o  c a l c u l a t e d  t h e  d i f f u s i o n  c o e f f i c i e n t s  in  t he  v a p o r  p h a s e  o f  
t he  benzene - -me thano l  s y s t e m .  In  c h a n g i n g  t h e  l i q u i d  p h a s e  c o n c e n t r a t i o n  f rom 0 .05  t o  0 . 8  t h e  
b o i l i n g  t e m p e r a t u r e  of  t he  m i x t u r e  r e m a i n s  a l m o s t  c o n s t a n t ,  b e i n g  T = 329~ The d i f f u s i o n  
coefficients of benzene vapors in methanol remained in this case also almost constant, being 
~)?2 = 0.95-10 -~ m2/sec, despite the fact that the composition of the vapor phase varied sub- 
stant ially. 

Thus, the method suggested of calculating the diffusion coefficients can be used to cal- 
culate mass-transport coefficients in mixtures. An improved agreement between calculated 
and experimental values should be expected with the extension of the validity limits of equa- 
tions of state for the solid sphere model, inside which one can obtain reliable values of 
the radial distribution function, as well as with the refined description of equilibrium data, 
particularly for three-component systems. 

NO TAT ION 

grad y, a (v- l)-dimensional vector; Yi, a quantity characterizing the mixture compo, 
sition; S, entropy; xi, molar fraction of the i-th component in the mixture; Yi, activity 
coefficient of the i-th component; fi, fi ~ nonequilibrium and equilibrium distribution func- 
tions; vi, linear velocity of the i-th molecule; ~, perturbation function; Xj, external force 
acting on the j-th molecule;g~j(r+I/2e~jk, ~iJ), equilibrium radial distribution function calcu- 
lated at the collison point of two molecules; Oil, interaction parameter of molecules i and 
j; k, a vector directed from the center of molecule j to the i-th molecule; w4i , relative 
velocity of molecules j and i; ni, number of particles of the i-thmolecule per unit~volume; Vo, mean 
molecular mass velocity; 0i, mass concentration of the i-th component in the mixture; and vi, 
partial specific volume of the i-th component. 
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